Line 4: | Line 4: | ||
<math> \chi(\omega) = 2 \pi \sigma (\omega - \pi) </math> | <math> \chi(\omega) = 2 \pi \sigma (\omega - \pi) </math> | ||
− | <math> x[n] = \frac{1}{2\pi}\int_{-\infty}^{\infty} \delta (\omega - \pi)e^{j\omega t} dw </math> | + | <math> x[n] = \frac{1}{2\pi}\int_{-\infty}^{\infty} 2\pi \delta (\omega - \pi)e^{j\omega t} dw </math> |
<math> x[n] = \int_{-\infty}^\infty \delta (\omega - \pi)e^{j\omega t} dw </math> | <math> x[n] = \int_{-\infty}^\infty \delta (\omega - \pi)e^{j\omega t} dw </math> |
Revision as of 18:03, 8 October 2008
Inverse Fourier Transform
$ \chi(\omega) = 2 \pi \sigma (\omega - \pi) $
$ x[n] = \frac{1}{2\pi}\int_{-\infty}^{\infty} 2\pi \delta (\omega - \pi)e^{j\omega t} dw $
$ x[n] = \int_{-\infty}^\infty \delta (\omega - \pi)e^{j\omega t} dw $