(→Inverse Fourier transform of X(w)) |
(→Inverse Fourier transform of X(w)) |
||
Line 3: | Line 3: | ||
== Inverse Fourier transform of <math>X(w)</math>== | == Inverse Fourier transform of <math>X(w)</math>== | ||
− | :<math>\begin{align} x(t)&=\frac{1}{2\pi}\int_{-\infty}^{\infty}X( | + | :<math>\begin{align} x(t)&=\frac{1}{2\pi}\int_{-\infty}^{\infty}X( \omega)e^{j\omega t}d\omega |
Revision as of 17:39, 8 October 2008
Specify a Fourier transform $ X(w) $
- $ X(w)=\frac{1}{4+jw} $
Inverse Fourier transform of $ X(w) $
- $ \begin{align} x(t)&=\frac{1}{2\pi}\int_{-\infty}^{\infty}X( \omega)e^{j\omega t}d\omega \end{align} $