Line 4: | Line 4: | ||
From the problem statement we know that T=4 | From the problem statement we know that T=4 | ||
+ | |||
+ | <math>= \frac{1}{4} \int_{0}^{4}x(t)e^{-jk\frac{2\pi}{4}}dt</math> | ||
+ | |||
+ | Knowing that T=4 we can visualize the periodic signal in the range <math>0 \leq t \leq 4</math>. x(t) = 1 for <math>0 \leq t \leq 1</math> and <math>3 \leq t \leq 4</math>. Otherwise, x(t) = 0. Therefore: | ||
<math>= \frac{1}{4} \int_{0}^{4}x(t)e^{-jk\frac{2\pi}{4}}dt</math> | <math>= \frac{1}{4} \int_{0}^{4}x(t)e^{-jk\frac{2\pi}{4}}dt</math> |
Revision as of 17:26, 8 October 2008
Test Problem 4
$ a_{k} = \frac{1}{T} \int_{0}^{T}x(t)e^{-jk\omega _{o}t}dt $
From the problem statement we know that T=4
$ = \frac{1}{4} \int_{0}^{4}x(t)e^{-jk\frac{2\pi}{4}}dt $
Knowing that T=4 we can visualize the periodic signal in the range $ 0 \leq t \leq 4 $. x(t) = 1 for $ 0 \leq t \leq 1 $ and $ 3 \leq t \leq 4 $. Otherwise, x(t) = 0. Therefore:
$ = \frac{1}{4} \int_{0}^{4}x(t)e^{-jk\frac{2\pi}{4}}dt $