(New page: ==Computing the Inverse Fourier Transform== <math>\ X(\omega)= 8 \pi w \delta(w-9) + 2 \pi w^{3} \delta(w-4 \pi) </math> The inverse Fourier transform is defined as: <math> x(t) = int_{...)
 
(Computing the Inverse Fourier Transform)
Line 5: Line 5:
 
The inverse Fourier transform is defined as:
 
The inverse Fourier transform is defined as:
  
<math> x(t) = int_{-infinity}^{infinity} \frac{X(w)}{2 \pi} e^{jwt} dw </math>
+
<math> x(t) = \int_{-infty}^{infty} \frac{X(w)}{2 \pi} e^{jwt} dw </math>

Revision as of 17:19, 8 October 2008

Computing the Inverse Fourier Transform

$ \ X(\omega)= 8 \pi w \delta(w-9) + 2 \pi w^{3} \delta(w-4 \pi) $

The inverse Fourier transform is defined as:

$ x(t) = \int_{-infty}^{infty} \frac{X(w)}{2 \pi} e^{jwt} dw $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett