Line 8: | Line 8: | ||
When | When | ||
− | <math> t- | + | <math> t-1 < 0 \rightarrow x_1(t) = e^{3t-3} </math> |
and when, | and when, | ||
− | <math> t- | + | <math> t-1 >0 \rightarrow x_2(t) = e^{-3t+3} </math> |
So, we can then compute the Fourier series by adding the integrals of each diferent case. | So, we can then compute the Fourier series by adding the integrals of each diferent case. | ||
Line 18: | Line 18: | ||
<math>\ \mathcal{X}(\omega) = \int_{-\infty}^{\infty} x_1(t)e^{-j\omega t}\,dt + \int_{-\infty}^{\infty} x_2(t)e^{-j\omega t} \,dt </math> | <math>\ \mathcal{X}(\omega) = \int_{-\infty}^{\infty} x_1(t)e^{-j\omega t}\,dt + \int_{-\infty}^{\infty} x_2(t)e^{-j\omega t} \,dt </math> | ||
− | <math> \mathcal{X}(\omega) = \int_{-\infty}^{ | + | <math> \mathcal{X}(\omega) = \int_{-\infty}^{1} e^{3t-3}e^{-j\omega t}\,dt + \int_{1}^{\infty} e^{-3t+3}e^{-j\omega t} \,dt </math> |
− | <math> \mathcal{X}(\omega) = \frac{1}{e^{ | + | <math> \mathcal{X}(\omega) = \frac{1}{e^{3}} \int_{-\infty}^{1} e^{3t-j\omega t}\,dt + e^{3} \int_{1}^{\infty} e^{-3t-j\omega t} \,dt </math> |
− | <math> \mathcal{X}(\omega) = \frac{1}{e^{ | + | <math> \mathcal{X}(\omega) = \frac{1}{e^{3}} \int_{-\infty}^{1} e^{t(3-j\omega)}\,dt + e^{3} \int_{1}^{\infty} e^{-t(3+j\omega)} \,dt </math> |
<math> \mathcal{X}(\omega) = {\left. \frac{e^{t(3-j\omega)}}{3-j\omega} \right]^{2}_{-\infty} } \frac{1}{e^{6}} + {\left. -\frac{e^{-t(3+j\omega)}}{3+j\omega} \right]^{\infty}_2 } e^{6}\,</math> | <math> \mathcal{X}(\omega) = {\left. \frac{e^{t(3-j\omega)}}{3-j\omega} \right]^{2}_{-\infty} } \frac{1}{e^{6}} + {\left. -\frac{e^{-t(3+j\omega)}}{3+j\omega} \right]^{\infty}_2 } e^{6}\,</math> |
Revision as of 16:59, 8 October 2008
FOURIER TRANSFORM
$ x(t) = e^{-3|t-2|} $
Noticing that there is an absolute value, we can proceed to divide in tow cases.
When
$ t-1 < 0 \rightarrow x_1(t) = e^{3t-3} $
and when,
$ t-1 >0 \rightarrow x_2(t) = e^{-3t+3} $
So, we can then compute the Fourier series by adding the integrals of each diferent case.
$ \ \mathcal{X}(\omega) = \int_{-\infty}^{\infty} x_1(t)e^{-j\omega t}\,dt + \int_{-\infty}^{\infty} x_2(t)e^{-j\omega t} \,dt $
$ \mathcal{X}(\omega) = \int_{-\infty}^{1} e^{3t-3}e^{-j\omega t}\,dt + \int_{1}^{\infty} e^{-3t+3}e^{-j\omega t} \,dt $
$ \mathcal{X}(\omega) = \frac{1}{e^{3}} \int_{-\infty}^{1} e^{3t-j\omega t}\,dt + e^{3} \int_{1}^{\infty} e^{-3t-j\omega t} \,dt $
$ \mathcal{X}(\omega) = \frac{1}{e^{3}} \int_{-\infty}^{1} e^{t(3-j\omega)}\,dt + e^{3} \int_{1}^{\infty} e^{-t(3+j\omega)} \,dt $
$ \mathcal{X}(\omega) = {\left. \frac{e^{t(3-j\omega)}}{3-j\omega} \right]^{2}_{-\infty} } \frac{1}{e^{6}} + {\left. -\frac{e^{-t(3+j\omega)}}{3+j\omega} \right]^{\infty}_2 } e^{6}\, $
$ \mathcal{X}(\omega) = \frac{1}{e^{6}} \frac{e^{6-2j\omega}}{3-j\omega} + e^{6} \frac{e^{-6-j\omega}}{3+j\omega} $
$ \mathcal{X}(\omega) = \frac{e^{-2j\omega}}{3-j\omega} + \frac{e^{-2j\omega}}{3+j\omega} $