(→Fourier Transform of x(t)) |
(→Fourier Transform of x(t)) |
||
Line 8: | Line 8: | ||
\\&= \int_{-\infty}^{\infty} cos(8 \pi t)e^{-t^{2}}e^{-j\omega t}dt | \\&= \int_{-\infty}^{\infty} cos(8 \pi t)e^{-t^{2}}e^{-j\omega t}dt | ||
\\&= \int_{-\infty}^{\infty}\frac{e^{j8\pi t}-e^{-j8\pi t}}{2}e^{-t^{2}}e^{-j\omega t}dt | \\&= \int_{-\infty}^{\infty}\frac{e^{j8\pi t}-e^{-j8\pi t}}{2}e^{-t^{2}}e^{-j\omega t}dt | ||
+ | \\&= \int_{-\infty}^{\infty}\frac{e^{j8\pi t-t^2}-e^{-j8\pi t-t^2}}{2}e^{-j\omega t}dt | ||
+ | \\&= \int_{-\infty}^{\infty}\frac{e^{t(j8\pi t-t)}-e^{-t(j8\pi +t)}}{2}e^{-j\omega t}dt | ||
+ | |||
\end{align}</math> | \end{align}</math> |
Revision as of 17:00, 8 October 2008
Specify a signal x(t)
$ x(t)=cos(8 \pi t)e^{-t^{2}} $
Fourier Transform of x(t)
- $ \begin{align} X(\omega) &=\int_{-\infty}^{\infty} x(t) e^{-j\omega t}dt \\&= \int_{-\infty}^{\infty} cos(8 \pi t)e^{-t^{2}}e^{-j\omega t}dt \\&= \int_{-\infty}^{\infty}\frac{e^{j8\pi t}-e^{-j8\pi t}}{2}e^{-t^{2}}e^{-j\omega t}dt \\&= \int_{-\infty}^{\infty}\frac{e^{j8\pi t-t^2}-e^{-j8\pi t-t^2}}{2}e^{-j\omega t}dt \\&= \int_{-\infty}^{\infty}\frac{e^{t(j8\pi t-t)}-e^{-t(j8\pi +t)}}{2}e^{-j\omega t}dt \end{align} $