(New page: Let <font size = '4'><math>x(t) = e^{-at} u(t)</math></font> <math>\chi(w) = \mathcal{F} (x(t)) = \int^{\infty}_{-\infty} e^{-at} u(t) e^{-jwt} dt</math> <math>= \int^{\infty}_{0} e^{-at...)
 
Line 1: Line 1:
Let <font size = '4'><math>x(t) = e^{-at} u(t)</math></font>
+
Let <font size = '4'><math>x(t) = e^{-a(t+1)} u(t + 1)</math></font>
  
<math>\chi(w) = \mathcal{F} (x(t)) = \int^{\infty}_{-\infty} e^{-at} u(t) e^{-jwt} dt</math>
+
<math>\chi(w) = \mathcal{F} (x(t)) = \int^{\infty}_{-\infty} e^{-at}e^{-a} u(t + 1) e^{-jwt} dt</math>
  
<math>= \int^{\infty}_{0} e^{-at}.e^{-jwt} dt</math>
+
<math>= e^{-a} \int^{\infty}_{-1} e^{-at}.e^{-jwt} dt</math>
  
<math>= \int^{\infty}_{0}e^{-(a+jw)t} dt</math>
+
<math>= e^{-a} \int^{\infty}_{-1}e^{-(a+jw)t} dt</math>
  
<math>= -\frac{1}{a+jw} [e^{-(a+jw)t}]^{\infty}_{0} </math>
+
<math>= -\frac{e^{-a}}{a+jw} [e^{-(a+jw)t}]^{\infty}_{0} </math>
  
<math>= -\frac{1}{a+jw} [-1]</math>
+
<math>= -\frac{e^{-a}}{a+jw} [-e^{a+jw}]</math>
  
<math>=\frac{1}{a+jw}</math>
+
<math>=\frac{e^{-(2a+jw)}}{a+jw}</math>

Revision as of 12:27, 8 October 2008

Let $ x(t) = e^{-a(t+1)} u(t + 1) $

$ \chi(w) = \mathcal{F} (x(t)) = \int^{\infty}_{-\infty} e^{-at}e^{-a} u(t + 1) e^{-jwt} dt $

$ = e^{-a} \int^{\infty}_{-1} e^{-at}.e^{-jwt} dt $

$ = e^{-a} \int^{\infty}_{-1}e^{-(a+jw)t} dt $

$ = -\frac{e^{-a}}{a+jw} [e^{-(a+jw)t}]^{\infty}_{0} $

$ = -\frac{e^{-a}}{a+jw} [-e^{a+jw}] $

$ =\frac{e^{-(2a+jw)}}{a+jw} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood