Line 10: Line 10:
 
<math>x(t)=\frac{1}{2\pi}cos (t)\int_{-\infty}^{\infty}e^{j\omega t}d\omega</math>
 
<math>x(t)=\frac{1}{2\pi}cos (t)\int_{-\infty}^{\infty}e^{j\omega t}d\omega</math>
  
<math>x(t)=\frac{1}{2\pi}cos (t){\left.\frac{e^{j\omega t}}{j(t}\right]_{-\infty}^{\infty}}</math>
+
<math>x(t)=\frac{1}{2\pi}cos (t){\left.\frac{e^{j\omega t}}{jt}\right]_{-\infty}^{\infty}}</math>
 +
 
 +
<math>x(t)=\frac{1}{2j\pi t}cos (t){\left.e^{j\omega t}\right]_{-\infty}^{\infty}}</math>

Revision as of 07:21, 8 October 2008

Let x(t)= $ cos(t) $


Then

$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{j\omega t}d\omega $

$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}cos(t)e^{j\omega t}d\omega $

$ x(t)=\frac{1}{2\pi}cos (t)\int_{-\infty}^{\infty}e^{j\omega t}d\omega $

$ x(t)=\frac{1}{2\pi}cos (t){\left.\frac{e^{j\omega t}}{jt}\right]_{-\infty}^{\infty}} $

$ x(t)=\frac{1}{2j\pi t}cos (t){\left.e^{j\omega t}\right]_{-\infty}^{\infty}} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood