Line 10: | Line 10: | ||
<math>x(t)=\frac{1}{2\pi}cos (t)\int_{-\infty}^{\infty}e^{j\omega t}d\omega</math> | <math>x(t)=\frac{1}{2\pi}cos (t)\int_{-\infty}^{\infty}e^{j\omega t}d\omega</math> | ||
− | <math>x(t)=\frac{1}{2\pi}cos (t){\left.\frac{e^{j\omega t}}{ | + | <math>x(t)=\frac{1}{2\pi}cos (t){\left.\frac{e^{j\omega t}}{jt}\right]_{-\infty}^{\infty}}</math> |
+ | |||
+ | <math>x(t)=\frac{1}{2j\pi t}cos (t){\left.e^{j\omega t}\right]_{-\infty}^{\infty}}</math> |
Revision as of 07:21, 8 October 2008
Let x(t)= $ cos(t) $
Then
$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{j\omega t}d\omega $
$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}cos(t)e^{j\omega t}d\omega $
$ x(t)=\frac{1}{2\pi}cos (t)\int_{-\infty}^{\infty}e^{j\omega t}d\omega $
$ x(t)=\frac{1}{2\pi}cos (t){\left.\frac{e^{j\omega t}}{jt}\right]_{-\infty}^{\infty}} $
$ x(t)=\frac{1}{2j\pi t}cos (t){\left.e^{j\omega t}\right]_{-\infty}^{\infty}} $