Line 14: | Line 14: | ||
<math>X(\omega) = \frac{1}{2}(\int_{-\infty}^{\infty}e^{jt(1-\omega)}dt+\int_{-\infty}^{\infty}e^{-jt(1+\omega)}dt)</math> | <math>X(\omega) = \frac{1}{2}(\int_{-\infty}^{\infty}e^{jt(1-\omega)}dt+\int_{-\infty}^{\infty}e^{-jt(1+\omega)}dt)</math> | ||
− | <math>X(\omega)={\left. \frac{e^{jt(1-\omega)}}{j(1-\omega | + | <math>X(\omega)={\left. \frac{e^{jt(1-\omega)}}{j(1-\omega)}\right]_{-\infty}^{\infty}} + {\left. \frac{e^{-jt(1+\omega)}}{-j(1+\omega)}\right]_{-\infty}^{\infty}} |
+ | |||
+ | <math>X(\omega)={\left. \frac{(1+\omega)e^{jt(1-\omega)}-(1-\omega)e^{-jt(1+\omega)}{j(1-\omega^2)}\right]_{-\infty}^{\infty}} |
Revision as of 07:01, 8 October 2008
Let x(t)= $ cos(t) $
Then
$ X(\omega) = \int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $
$ X(\omega) = \int_{-\infty}^{\infty}cos(t)e^{-j\omega t}dt $
$ X(\omega) = \int_{-\infty}^{\infty}\frac{1}{2}(e^{jt}+e^{-jt})e^{-j\omega t}dt $
$ X(\omega) = \frac{1}{2}(\int_{-\infty}^{\infty}e^{jt(1-\omega)}dt+\int_{-\infty}^{\infty}e^{-jt(1+\omega)}dt) $
$ X(\omega) = \frac{1}{2}(\int_{-\infty}^{\infty}e^{jt(1-\omega)}dt+\int_{-\infty}^{\infty}e^{-jt(1+\omega)}dt) $
$ X(\omega)={\left. \frac{e^{jt(1-\omega)}}{j(1-\omega)}\right]_{-\infty}^{\infty}} + {\left. \frac{e^{-jt(1+\omega)}}{-j(1+\omega)}\right]_{-\infty}^{\infty}} <math>X(\omega)={\left. \frac{(1+\omega)e^{jt(1-\omega)}-(1-\omega)e^{-jt(1+\omega)}{j(1-\omega^2)}\right]_{-\infty}^{\infty}} $