(Problem 4.1)
(Part b)
Line 10: Line 10:
 
====Part a====
 
====Part a====
 
====Part b====
 
====Part b====
 +
----
 +
 
===Using the Table===
 
===Using the Table===
 
====Part a====
 
====Part a====

Revision as of 14:31, 8 October 2008

Allen Humphreys_ECE301Fall2008mboutin
Homework 5_ECE301Fall2008mboutin | .1 | .2 | .3 | .4

Problem 4.1

Using Calculus

Part a

Part b


Using the Table

Part a

$ f(t) = e^{-2(t-1)} \times u(t-1) $

remove the time shift where $ t_o = 1 $

$ g(t) = e^{-2t} \times u(t) $

the time shift property in table 4.1 says:

$ F(j\omega) = e^{-j\omega t_o} G(j\omega) $

from table 4.2 the FT of $ g(t) $ can be found

$ G(j\omega) = \frac{1}{2 + j\omega} $

then the final answer can be found substituting 1 for $ t_o $

$ F(j\omega) = e^{-j\omega} G(j\omega) = \frac{e^{-j\omega}}{2 + j\omega} $

Part b

$ f(t) = e^{-2 |(t-1)|} $
$ f(t) = \begin{cases} e^{-2 (t-1)}, t>1\\ e^{-2 (1-t)}, t<1 \end{cases} = \begin{cases} e^{-2 (t-1)}\times u(t-1) = h(t)\\ e^{-2 (1-t)}\times u(1-t) = k(t) \end{cases} $

By the properties of integrating an absolute value and the linearity of the Fourier transform.

$ F(j\times \omega) = H(j\times \omega) + K(j\times \omega) $
$ H(j\times \omega) = \frac{e^{-j \omega}}{(2 + j \omega)} $ from part a.
$ k(t) = e^{-2 (1-t)}\times u(1-t) $

remove the time shift and time reversal

$ m(t) = e^{-2(t)}\times u(t) $

from the table 4.2:

$ M(j \omega) = \frac{1}{2 + j \omega} $

apply the time shift property from table 4.1:

$ M(j \omega) = \frac{e^{-j\omega}}{2 + j \omega} $

apply the time reversal property from table 4.1 making sure to only apply it to the FT of the base function and not to the portion added by the time shift:

$ K(j \omega) = \frac{e^{-j\omega}}{2 - j \omega} $
$ H(j \omega) + K(j \omega) = \frac{e^{-j \omega}}{2 + j \omega} + \frac{e^{-j\omega}}{2 - j \omega} $

finding common denominators:

$ \frac{(2-j\omega)e^{-j \omega}}{2^2 + \omega^2} + \frac{(2+j\omega)e^{-j\omega}}{2^2 + \omega^2} $

in the numerator the $ j\omega $ terms will cancel when added yielding the final answer:

$ F(j\omega) = \frac{4e^{-j \omega}}{4 + \omega^2} $

Problem 4.2

a

$ f(t) = \delta\big(t+1) + \delta(t-1) $


$ F(j\omega) = \int_{-\infty}^{\infty}\delta(t+1)e^{-j\omega t}\,dt + \int_{-\infty}^{\infty}\delta(t-1)e^{-j\omega t}\,dt $

by the sifting property of the delta function:

$ F\big(j\omega) = e^{j \omega} + e^{-j \omega} $

b

$ f(t) = \frac{d\lbrace u(-2-t) + u(t-2)\rbrace }{dx} $

Problem 4.3

a

$ f(t) = sin(2 \pi t + \frac{\pi}{4}) $

b

$ f(t) = 1 + cos(6 \pi t + \frac{\pi}{8}) $

Problem 4.4

a

$ X_1\big(j\omega) = 2\pi \delta(\omega) + \pi \delta(\omega - 4\pi) + \pi \delta(\omega + 4 \pi) $

b

$ X_2\big(j\omega) = \begin{cases} 2, \,\,\,\,\,\,\,\, 0 \le \omega \le 2 \\ -2,\,\, -2 \le \omega < 0 \\ 0,\,\,\,\,\,\, |\omega| > 2 \end{cases} $

Problem 4.5

Find the inverse Fourier transform of:

$ X(j\omega) = |X(j\omega)|e^{j \sphericalangle X(j\omega)} $

Given that:

$ \big|X(j\omega)| = 2\lbrace u(\omega +3) - u(\omega - 3)\rbrace $
$ \sphericalangle X(j \omega) = -\frac{2}{3} \omega + \pi $

Problem 4.21

Compute the Fourier transform of each of the following signals:

a

$ f\big(t) = [e^{-\alpha t}cos(\omega_0 t)]u(t), \alpha > 0 $

b

c

d

e

f

g

h

i

j

Problem 4.22

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach