m
Line 15: Line 15:
  
 
<math>\int_{-\infty}^{\infty}te^{-6t}u(t) e^{-j\omega t}dt \;</math>
 
<math>\int_{-\infty}^{\infty}te^{-6t}u(t) e^{-j\omega t}dt \;</math>
 +
 +
<math>=\int_{0}^{\infty}te^{-6t-j\omega t}dt \;</math>
 +
 +
<math>=\int_{0}^{\infty}te^{-t(6+j\omega t)}dt \;</math>
 +
 +
Do integration by parts

Revision as of 18:41, 7 October 2008

Fourier Transform

$ X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $

$ x(t)=(t-1)e^{-6t+6}u(t-1) \,\ $

$ X(\omega)=\int_{-\infty}^{\infty}x(t)=(t-6)e^{-6t+6}u(t-6) e^{-j\omega t}dt \; $


$ x(t) \,\ $looks like $ te^{-6t}u(t) \,\ $ so we evaluate that

the F.T of $ te^{-6t}u(t) \,\ $ is

$ \int_{-\infty}^{\infty}te^{-6t}u(t) e^{-j\omega t}dt \; $

$ =\int_{0}^{\infty}te^{-6t-j\omega t}dt \; $

$ =\int_{0}^{\infty}te^{-t(6+j\omega t)}dt \; $

Do integration by parts

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett