(New page: <math>\ x(t) = e^{-2|t|}cos(8t)</math>)
 
Line 1: Line 1:
 
<math>\ x(t) = e^{-2|t|}cos(8t)</math>
 
<math>\ x(t) = e^{-2|t|}cos(8t)</math>
 +
 +
<math>X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \!</math>
 +
 +
<math> = \int_{-\infty}^{\infty} e^{-2|t|}cos(8t) e^{-j\omega t} dt \!</math>
 +
 +
<math> = \int_{-\infty}^{0} e^{2|t|}cos(8t) e^{-j\omega t} dt \! + \int_{0}^{\infty} e^{-2|t|}cos(8t) e^{-j\omega t} dt \!</math>

Revision as of 11:47, 8 October 2008

$ \ x(t) = e^{-2|t|}cos(8t) $

$ X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \! $

$ = \int_{-\infty}^{\infty} e^{-2|t|}cos(8t) e^{-j\omega t} dt \! $

$ = \int_{-\infty}^{0} e^{2|t|}cos(8t) e^{-j\omega t} dt \! + \int_{0}^{\infty} e^{-2|t|}cos(8t) e^{-j\omega t} dt \! $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva