Line 38: Line 38:
  
  
<math>\frac{1}{2 \pi}()</math>
+
duality applied
 +
 
 +
<math>\frac{1}{2 \pi}( 2 \pi e^{j \frac{\pi}{3}} \delta(-t - 4) + 2 \pi e^{-j \frac{\pi}{3}} \delta(-t + 4))</math>
  
  
 
<math>Insert formula here</math>
 
<math>Insert formula here</math>

Revision as of 12:18, 8 October 2008

The Signal

$ X(j \omega) = \cos(4 \omega + \frac{\pi}{3}) $

Taken from 4.22.b from the course book, it looks interesting and I want to try it.


The Inverse Fourier Transform

$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j \omega)e^{j\omega t}d\omega $

For this problem I will not be using the above equation but in stead be using duality.


$ x(t) = \cos(4 t + \frac{\pi}{3}) $


note

$ x(t) = \sum^{\infty}_{k = -\infty} a_k e^{j k \omega_o t} $

and

$ \cos(4 t + \frac{\pi}{3}) = \frac{e^{j(4 t + \frac{\pi}{3})}}{2} + \frac{e^{-j(4 t + \frac{\pi}{3})}}{2} $

$ \omega_o = 4 $


$ a_1 = e^{j \frac{\pi}{3}} $


$ a_{-1} = e^{-j \frac{\pi}{3}} $


$ = 2 \pi e^{j \frac{\pi}{3}} \delta(\omega - 4) + 2 \pi e^{-j \frac{\pi}{3}} \delta(\omega + 4) $


duality applied

$ \frac{1}{2 \pi}( 2 \pi e^{j \frac{\pi}{3}} \delta(-t - 4) + 2 \pi e^{-j \frac{\pi}{3}} \delta(-t + 4)) $


$ Insert formula here $

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach