(→The Inverse Fourier Transform) |
(→The Inverse Fourier Transform) |
||
Line 12: | Line 12: | ||
<math>x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j \omega)e^{j\omega t}d\omega</math> | <math>x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j \omega)e^{j\omega t}d\omega</math> | ||
+ | For this problem I will not be using the above equation but in stead be using duality. | ||
− | <math>x(t)= | + | <math>x(t) = \cos</math> |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + |
Revision as of 10:12, 8 October 2008
The Signal
$ X(j \omega) = \cos(4 \omega + \frac{\pi}{3}) $
Taken from 4.22.b from the course book, it looks interesting and I want to try it.
The Inverse Fourier Transform
$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j \omega)e^{j\omega t}d\omega $
For this problem I will not be using the above equation but in stead be using duality.
$ x(t) = \cos $