(→Fourier Transform) |
(→Fourier Transform) |
||
Line 8: | Line 8: | ||
<math> = \int_{1}^{\infty} e^{2|t-1|} e^{-j\omega t} dt \!</math> + <math> \int_{-\infty}^{1} e^{2|t-1|} e^{-j\omega t} dt \!</math> | <math> = \int_{1}^{\infty} e^{2|t-1|} e^{-j\omega t} dt \!</math> + <math> \int_{-\infty}^{1} e^{2|t-1|} e^{-j\omega t} dt \!</math> | ||
+ | |||
+ | |||
+ | ... LOTS OF MATH... | ||
+ | |||
+ | |||
+ | = <math> \frac{e^{-j \omega}}{2 + j \omega} + \frac{e^{-j \omega}}{2 - j \omega} |
Revision as of 15:38, 7 October 2008
Fourier Transform
Signal: x(t) = $ e^{3|t-1|} $
$ X(j \omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \! $
$ = \int_{-\infty}^{\infty} e^{2|t-1|} e^{-j\omega t} dt \! $
$ = \int_{1}^{\infty} e^{2|t-1|} e^{-j\omega t} dt \! $ + $ \int_{-\infty}^{1} e^{2|t-1|} e^{-j\omega t} dt \! $
... LOTS OF MATH...
= $ \frac{e^{-j \omega}}{2 + j \omega} + \frac{e^{-j \omega}}{2 - j \omega} $