(New page: ==signal == assume <math>x(t) = e^{-5t}u(t) + e^{-4(t-1)}u(t-3)</math> == answer == <math>x(w) = \int_{-\infty}^{\infty}</math>) |
|||
Line 8: | Line 8: | ||
== answer == | == answer == | ||
− | <math>x(w) = \int_{-\infty}^{\infty}</math> | + | <math>x(w) = \int_{-\infty}^{\infty}x(t)e^{-jwt}dt</math> |
+ | |||
+ | <math>=\int_{-\infty}^{\infty}(e^{-5t}u(t) + e{-4(t-1)})e^{-jwt}dt</math> | ||
+ | |||
+ | <math>=\int_{0}^{\infty}e^{-5t} e^{-jwt}dt + \int_{3}^{\infty}e^{-4(t-1)}e^{-jwt}dt</math> |
Revision as of 14:30, 7 October 2008
signal
assume
$ x(t) = e^{-5t}u(t) + e^{-4(t-1)}u(t-3) $
answer
$ x(w) = \int_{-\infty}^{\infty}x(t)e^{-jwt}dt $
$ =\int_{-\infty}^{\infty}(e^{-5t}u(t) + e{-4(t-1)})e^{-jwt}dt $
$ =\int_{0}^{\infty}e^{-5t} e^{-jwt}dt + \int_{3}^{\infty}e^{-4(t-1)}e^{-jwt}dt $