Line 16: | Line 16: | ||
<math> = \int_{-5}^{5}e^{t*(3j -j\omega )}dt + \int_{0}^{\infty}e^{t*(-2 -j\omega )}dt\,</math> | <math> = \int_{-5}^{5}e^{t*(3j -j\omega )}dt + \int_{0}^{\infty}e^{t*(-2 -j\omega )}dt\,</math> | ||
− | <math> = \frac{e^{3jt - j\omega t}}{3j-j\omega}]_{-5}^{5}</math> | + | <math> = \frac{e^{3jt - j\omega t}}{3j-j\omega}]_{-5}^{5} + \frac{e^{-2t - j\omega t}}{-2 -j\omega}]_{0}^{infty}\,</math> |
Revision as of 11:26, 7 October 2008
Signal
$ x(t) = e^{3jt}*(u(t+5) - u(t-5)) + e^{-2t}*u(t)\, $
Transformed
$ X(\omega) = \int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt\, $
$ = \int_{-\infty}^{\infty}e^{3jt}*(u(t+5) - u(t-5))e^{-j\omega t}dt + \int_{-\infty}^{\infty}e^{-2t}u(t)e^{-j\omega t}dt\, $
$ = \int_{-5}^{5}e^{3jt}e^{-j\omega t}dt + \int_{0}^{\infty}e^{-2t}e^{-j\omega t}dt\, $
$ = \int_{-5}^{5}e^{3jt -j\omega t}dt + \int_{0}^{\infty}e^{-2t -j\omega t}dt\, $
$ = \int_{-5}^{5}e^{t*(3j -j\omega )}dt + \int_{0}^{\infty}e^{t*(-2 -j\omega )}dt\, $
$ = \frac{e^{3jt - j\omega t}}{3j-j\omega}]_{-5}^{5} + \frac{e^{-2t - j\omega t}}{-2 -j\omega}]_{0}^{infty}\, $