Line 3: Line 3:
 
<math>x(t) = \frac{1}{2 \pi} \int^{\infty}_{- \infty} X(w) e^{jwt} dw</math>
 
<math>x(t) = \frac{1}{2 \pi} \int^{\infty}_{- \infty} X(w) e^{jwt} dw</math>
  
<math>\frac{1}{2 \pi} \int^{\infty}_{- \infty} [ \pi \delta (w - 2 \pi)(3j - 7) + \pi \delta (w + 2 \pi) (5j - 9)] e^{jwt} dw</math>
+
<math> = \frac{1}{2 \pi} \int^{\infty}_{- \infty} [ \pi \delta (w - 2 \pi)(3j - 7) + \pi \delta (w + 2 \pi) (5j - 9)] e^{jwt} dw</math>
  
  
<math>\frac{3j - 7}{2} \int^{\infty}_{- \infty} \delta (w -2 \pi) e^{jwt} dw + \frac (5j - 9}{2} \int^{\infty}_{- \infty} \delta (w + 2 \pi) e^{jwt} dw</math>
+
<math> = \frac{3j - 7}{2} \int^{\infty}_{- \infty} \delta (w -2 \pi) e^{jwt} dw + \frac (5j - 9}{2} \int^{\infty}_{- \infty} \delta (w + 2 \pi) e^{jwt} dw</math>

Revision as of 10:41, 7 October 2008

$ X(w) = \pi \delta (w - 2 \pi)(3j - 7) + \pi \delta (w + 2 \pi) (5j - 9) $

$ x(t) = \frac{1}{2 \pi} \int^{\infty}_{- \infty} X(w) e^{jwt} dw $

$ = \frac{1}{2 \pi} \int^{\infty}_{- \infty} [ \pi \delta (w - 2 \pi)(3j - 7) + \pi \delta (w + 2 \pi) (5j - 9)] e^{jwt} dw $


$ = \frac{3j - 7}{2} \int^{\infty}_{- \infty} \delta (w -2 \pi) e^{jwt} dw + \frac (5j - 9}{2} \int^{\infty}_{- \infty} \delta (w + 2 \pi) e^{jwt} dw $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood