(New page: <math>X(w) = \pi \delta (w - 2 \pi)(3j - 7) + \pi \delta (w + 2 \pi) (5j - 9) </math> <math>x(t) = \frac{1}{2 \pi} \int^{\infty}_{- \infty} X(w) e^{jwt} dw</math> <math>\frac{1}{2 \pi} ...)
 
Line 6: Line 6:
  
  
<math>\frac{3j - 7}{2} \int^{\infty}_{- \infty} \delta (w -2 \pi) e^{jwt} + \frac (5j - 9}{2} \int^{\infty}_{- \infty} \delta (w + 2 \pi) e^{jwt} dw</math>
+
<math>\frac{3j - 7}{2} \int^{\infty}_{- \infty} \delta (w -2 \pi) e^{jwt} dw + \frac (5j - 9}{2} \int^{\infty}_{- \infty} \delta (w + 2 \pi) e^{jwt} dw</math>

Revision as of 10:40, 7 October 2008

$ X(w) = \pi \delta (w - 2 \pi)(3j - 7) + \pi \delta (w + 2 \pi) (5j - 9) $

$ x(t) = \frac{1}{2 \pi} \int^{\infty}_{- \infty} X(w) e^{jwt} dw $

$ \frac{1}{2 \pi} \int^{\infty}_{- \infty} [ \pi \delta (w - 2 \pi)(3j - 7) + \pi \delta (w + 2 \pi) (5j - 9)] e^{jwt} dw $


$ \frac{3j - 7}{2} \int^{\infty}_{- \infty} \delta (w -2 \pi) e^{jwt} dw + \frac (5j - 9}{2} \int^{\infty}_{- \infty} \delta (w + 2 \pi) e^{jwt} dw $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva