Line 11: Line 11:
 
<math>\,\mathcal{X}(\omega)=\int_{-1}^{\infty} e^{-(7+j\omega )t} dt + \int_{1}^{\infty} e^{-(23+j\omega )t} dt\,</math>
 
<math>\,\mathcal{X}(\omega)=\int_{-1}^{\infty} e^{-(7+j\omega )t} dt + \int_{1}^{\infty} e^{-(23+j\omega )t} dt\,</math>
  
<math>\,\mathcal{X}(\omega)=\left. \frac{e^{-(7+j\omega )t}}{-(7+j\omega )}\right]_{-1}^{\infty} \,</math>
+
<math>\,\mathcal{X}(\omega)={\left. \frac{e^{-(7+j\omega )t}}{-(7+j\omega )}\right]_{-1}^{\infty}} + {\left. \frac{e^{-(23+j\omega )t}}{-(23+j\omega )}\right]_{1}^{\infty}}\,</math>
 +
 
 +
<math>\,\mathcal{X}(\omega)=\frac{-e^{7+j\omega}}{-(7+j\omega )} - \frac{-e^{-(23+j\omega)}}{-(23+j\omega )} \,</math>

Revision as of 09:42, 6 October 2008

Compute the fourier transform of this signal below:

$ \,x(t)=e^{-7t}u(t+1) + e^{23t}u(t-1)\, $


$ \,\mathcal{X}(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}\,dt\, $

$ \,\mathcal{X}(\omega)=\int_{-\infty}^{\infty} e^{-7t} u(t+1) e^{-j\omega t} dt + \int_{-\infty}^{\infty} e^{-23t} u(t-1) e^{-j\omega t}dt\, $

$ \,\mathcal{X}(\omega)=\int_{-1}^{\infty} e^{-(7+j\omega )t} dt + \int_{1}^{\infty} e^{-(23+j\omega )t} dt\, $

$ \,\mathcal{X}(\omega)={\left. \frac{e^{-(7+j\omega )t}}{-(7+j\omega )}\right]_{-1}^{\infty}} + {\left. \frac{e^{-(23+j\omega )t}}{-(23+j\omega )}\right]_{1}^{\infty}}\, $

$ \,\mathcal{X}(\omega)=\frac{-e^{7+j\omega}}{-(7+j\omega )} - \frac{-e^{-(23+j\omega)}}{-(23+j\omega )} \, $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett