Line 11: Line 11:
 
<math>\,\mathcal{X}(\omega)=\int_{-1}^{\infty} e^{-(7+j\omega )t} dt + \int_{1}^{\infty} e^{-(23+j\omega )t} dt\,</math>
 
<math>\,\mathcal{X}(\omega)=\int_{-1}^{\infty} e^{-(7+j\omega )t} dt + \int_{1}^{\infty} e^{-(23+j\omega )t} dt\,</math>
  
<math>\left. \frac{e^{-15}}{-(j\omega +5)}e^{-(j\omega +5)t}\right]_{1}^{+\infty}</math>
+
<math>\,\mathcal{X}(\omega)=\left. \frac{e^{-(7+j\omega )t}}{-(7+j\omega )}\right]_{-1}^{\infty} \,</math>

Revision as of 07:19, 6 October 2008

Compute the fourier transform of this signal below:

$ \,x(t)=e^{-7t}u(t+1) + e^{23t}u(t-1)\, $


$ \,\mathcal{X}(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}\,dt\, $

$ \,\mathcal{X}(\omega)=\int_{-\infty}^{\infty} e^{-7t} u(t+1) e^{-j\omega t} dt + \int_{-\infty}^{\infty} e^{-23t} u(t-1) e^{-j\omega t}dt\, $

$ \,\mathcal{X}(\omega)=\int_{-1}^{\infty} e^{-(7+j\omega )t} dt + \int_{1}^{\infty} e^{-(23+j\omega )t} dt\, $

$ \,\mathcal{X}(\omega)=\left. \frac{e^{-(7+j\omega )t}}{-(7+j\omega )}\right]_{-1}^{\infty} \, $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva