Line 3: Line 3:
 
<math>x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{-j\omega t}d\omega</math>
 
<math>x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{-j\omega t}d\omega</math>
  
 +
<font size="4.5">
 
<math>X(\omega) = \pi\delta(\omega - 4\pi)(2-3j) + \pi\delta(\omega + 4\pi)(2+3j)</math>
 
<math>X(\omega) = \pi\delta(\omega - 4\pi)(2-3j) + \pi\delta(\omega + 4\pi)(2+3j)</math>
 +
</font>
 +
 +
<math>x(t)\frac{1}{2\pi}\int_{-\infty}^{\infty}[\pi\delta(\omega - 4\pi)(2-3j) + \pi\delta(\omega + 4\pi)(2+3j)]e^{-j\omega t}d\omega</math>

Revision as of 09:20, 3 October 2008

Inverse Fourier Transform

$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{-j\omega t}d\omega $

$ X(\omega) = \pi\delta(\omega - 4\pi)(2-3j) + \pi\delta(\omega + 4\pi)(2+3j) $

$ x(t)\frac{1}{2\pi}\int_{-\infty}^{\infty}[\pi\delta(\omega - 4\pi)(2-3j) + \pi\delta(\omega + 4\pi)(2+3j)]e^{-j\omega t}d\omega $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood