Line 3: Line 3:
 
<math>x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{-j\omega t}d\omega</math>
 
<math>x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{-j\omega t}d\omega</math>
  
<math>X(\omega) = \delta(\omega - 4\pi)</math>
+
<math>X(\omega) = \pi\delta(\omega - 4\pi)(2-3j) + \pi\delta(\omega + 4\pi)(2+3j)</math>

Revision as of 09:19, 3 October 2008

Inverse Fourier Transform

$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{-j\omega t}d\omega $

$ X(\omega) = \pi\delta(\omega - 4\pi)(2-3j) + \pi\delta(\omega + 4\pi)(2+3j) $

Alumni Liaison

EISL lab graduate

Mu Qiao