Line 3: Line 3:
 
<math>x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{-j\omega t}d\omega</math>
 
<math>x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{-j\omega t}d\omega</math>
  
<math>X(\omega} = \dirac{\omega - 4\pi}</math>
+
<math>X(\omega} = \delta(\omega - 4\pi)</math>

Revision as of 09:18, 3 October 2008

Inverse Fourier Transform

$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{-j\omega t}d\omega $

$ X(\omega} = \delta(\omega - 4\pi) $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett