Line 7: Line 7:
 
</font>
 
</font>
  
<math>X(\omega)=\int_{-\infty}^{\infty}t^2 u(t) e^{-j\omega t}dt</math>
+
<math>X(\omega)=\int_{-\infty}^{\infty}t^2 u(t) e^{-j\omega t}dt \; = \int_{0}^{\infty}t^2 e^{-j\omega t}dt</math>

Revision as of 08:39, 3 October 2008

Fourier Transform

$ X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $

$ x(t)=t^2 u(t) $

$ X(\omega)=\int_{-\infty}^{\infty}t^2 u(t) e^{-j\omega t}dt \; = \int_{0}^{\infty}t^2 e^{-j\omega t}dt $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn