(New page: Infinite Geometric Series: <math>\sum_{k=0}^\infty x^k = \frac{1}{1-x} </math> provided that <math> |x|<1 </math> (else it diverges).)
 
Line 1: Line 1:
Infinite Geometric Series:  <math>\sum_{k=0}^\infty x^k = \frac{1}{1-x} </math> provided that <math> |x|<1 </math> (else it diverges).
+
Infinite Geometric Series:  <math>\sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1}{1-x}&, \text{ if } |x|\leq 1\\ \text{diverges} &, \text{ else }\end{array}\right. </math>

Revision as of 07:56, 1 October 2008

Infinite Geometric Series: $ \sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1}{1-x}&, \text{ if } |x|\leq 1\\ \text{diverges} &, \text{ else }\end{array}\right. $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang