(New page: Periodic Signal 1. <math>N = 4\,</math> 2. <math>a_k = 0\,</math> for all |k|>1 3. <math>\sum_{n=0}^{6}x[n]=4</math> 4. <math>\sum_{n=0}^{3}(-1)^nx[n]=10</math> Inspection : Using In...)
 
 
Line 28: Line 28:
  
 
<math>a_0=\frac{5}{8}</math>
 
<math>a_0=\frac{5}{8}</math>
 +
 +
Source:
 +
* [[HW4.5 Ronny Wijaya_ECE301Fall2008mboutin]]

Latest revision as of 18:29, 26 September 2008

Periodic Signal

1. $ N = 4\, $

2. $ a_k = 0\, $ for all |k|>1

3. $ \sum_{n=0}^{6}x[n]=4 $

4. $ \sum_{n=0}^{3}(-1)^nx[n]=10 $

Inspection :

Using Info 1 :

$ x[n]=\sum_{n=0}^{6}a_ke^{jk(2\pi/4)n}\, $

$ x[n]=\sum_{n=0}^{6}a_ke^{jk(\pi/2)n}\, $

Using third info to find $ a_0\, $:

$ a_0=\frac{1}{16}\sum_{n=0}^{6}x[n]=\frac{1}{16} 4 = \frac{1}{4} $

Using fourth info, we can find $ a_1\, $:

$ a_0=\frac{1}{16}\sum_{n=0}^{6}(-1)^nx[n]\, $

$ a_0=\frac{1}{16}\sum_{n=0}^{6}x[n]e^{-jn\pi}\, $

$ a_0=\frac{5}{8} $

Source:

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett