(New page: ===Define a CT LTI system=== ==Part a== Obtain the unit impulse response h(t) and the system function H(s) :<math>\, y(t)=2x(t) \rightarrow h(t)=2\delta (t)</math><br><br> :<math>\begin{al...)
 
(Part b)
Line 9: Line 9:
 
  \end{align}</math>
 
  \end{align}</math>
 
==Part b==
 
==Part b==
 +
Compute the response of the system to the signal using H(s) and the Fourier series coefficients of the signal.<br><br>
 
:<math>\, x(t)=6sin(6t)=\frac{3e^{j6t}}{j}-\frac{3e^{-j6t}}{j}</math><br><br>
 
:<math>\, x(t)=6sin(6t)=\frac{3e^{j6t}}{j}-\frac{3e^{-j6t}}{j}</math><br><br>
 
:<math>\begin{align} \, \therefore y(t)&=\frac{3e^{j6t}}jH(j6)-\frac{3e^{-j6t}}{j}H(-j6)\\&= \frac{6e^{j6t}}{j}-\frac{6e^{-j6t}}{j}
 
:<math>\begin{align} \, \therefore y(t)&=\frac{3e^{j6t}}jH(j6)-\frac{3e^{-j6t}}{j}H(-j6)\\&= \frac{6e^{j6t}}{j}-\frac{6e^{-j6t}}{j}

Revision as of 18:10, 26 September 2008

Define a CT LTI system

Part a

Obtain the unit impulse response h(t) and the system function H(s)

$ \, y(t)=2x(t) \rightarrow h(t)=2\delta (t) $

$ \begin{align} \, H(s)&=\int_{-\infty}^\infty h(\tau)e^{-j\omega\tau}d\tau \\&=\int_{-\infty}^\infty h(\tau)e^{-s\tau}d\tau \\&=\int_{-\infty}^\infty 2\delta(\tau)e^{-s\tau}d\tau \\&=2e^{-s\cdot 0} \\&=2 \end{align} $

Part b

Compute the response of the system to the signal using H(s) and the Fourier series coefficients of the signal.

$ \, x(t)=6sin(6t)=\frac{3e^{j6t}}{j}-\frac{3e^{-j6t}}{j} $

$ \begin{align} \, \therefore y(t)&=\frac{3e^{j6t}}jH(j6)-\frac{3e^{-j6t}}{j}H(-j6)\\&= \frac{6e^{j6t}}{j}-\frac{6e^{-j6t}}{j} \\ &= 2\cdot (\frac{3e^{j6t}}{j}-\frac{3e^{-j6t}}{j}) \\ &=2\cdot 6sin(6t) \\ &= 12sin(6t) \\ a_1 &= \frac{6}{j} \\ a_{-1}&=\frac{-6}{j}\end{align} $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva