(New page: Guessing the periodic signal: ==Hint== 1. Period of x[n] is N=4. 2. <math>a_0=3</math>. 3.<math>\sum_{n=4}^{7}(-1)^{n}x[n]=4</math>. 4.x[n] has minimum power among all the signals that...)
 
(Solution)
Line 31: Line 31:
 
<math>=3^2+|a_1|^2+1^2+|a_3|^2</math>
 
<math>=3^2+|a_1|^2+1^2+|a_3|^2</math>
  
the minimum happens when <math>\abs{a_1)}</math>
+
the minimum happens when <math>|a_1|^2=0,and|a_3|^2=0}</math>
 +
 
 +
Answer:
 +
 
 +
x[n]=3+e^(j\pin)

Revision as of 17:38, 26 September 2008

Guessing the periodic signal:

Hint

1. Period of x[n] is N=4.

2. $ a_0=3 $.

3.$ \sum_{n=4}^{7}(-1)^{n}x[n]=4 $.

4.x[n] has minimum power among all the signals that satisfy 1,2,3.

Solution

From (1), we can get $ omega_0=2\pi/N=\frac{1}{2}\pi $,so x[n]=$ \sum_{k=0}^{N-1}a_ke^{jk\frac{1}{2}\pi n} $.

From (2),x[n]=3+$ \sum_{k=1}^{3}a_ke^{jk\frac{1}{2}\pi n} $.

Since N=4, we have x[1]=x[5],x[2]=x[6],x[3]=x[7], and $ (-1)^n $ is periodic with 4,too

From (3),we can get $ a_2=\frac{1}{4}sum_{n=4}^{7}e^{-j\pi n}x[n]=\frac{1}{4}sum_{n=4}^{7}(-1)^nx[n]=1 $

So,

$ x[n]= 3+a_1e^{j\frac{\pi}{2}n}+e^{j\frac{2\pi}{2}n}+a_3e^{j\frac{3\pi}{2}n} $

Power of x[n] is

$ P=\frac{1}{4}\sum{n=0}^{3}|x[n]|^2 $

$ =\sum{k=0}^{3}|a_k|^2 $

$ =3^2+|a_1|^2+1^2+|a_3|^2 $

the minimum happens when $ |a_1|^2=0,and|a_3|^2=0} $

Answer:

x[n]=3+e^(j\pin)

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva