(→Part A) |
(→Part A) |
||
Line 1: | Line 1: | ||
==Part A== | ==Part A== | ||
− | |||
<math>y(t) = K x(t-a)</math> | <math>y(t) = K x(t-a)</math> |
Revision as of 17:27, 26 September 2008
Part A
$ y(t) = K x(t-a) $
if $ x(t)=e^{jwt} $ was inputed to the system
$ y(t) = K e^{jw(t-a)} $
$ = K e^{-jwa}e^{jwt} $
eigen function is $ e^{-jwa} $
$ H(jw)=Ke^{-jwa} $
$ h(t)=K\delta (t-a) $
$ H(s)=\int_{-\infty}^{\infty}K\delta (\tau -a)e^{-s\tau}d\tau=Ke^{-as} $