(Part A)
Line 17: Line 17:
  
 
<math>h(t)=K\delta (t-a)</math>
 
<math>h(t)=K\delta (t-a)</math>
 +
 +
<math>H(s)=\int_{-\infty}^{\infty}h(\tau)e^{-s\tau}=\int_{-\infty}^{\infty}\frac{1}{2}u(\tau)e^{-s\tau}</math>

Revision as of 17:23, 26 September 2008

Part A

$ y(t) = K x(t-a) $

if $ x(t)=e^{jwt} $ was inputed to the system

$ y(t) = K e^{jw(t-a)} $

$ = K e^{-jwa}e^{jwt} $


eigen function is $ e^{-jwa} $


$ H(jw)=Ke^{-jwa} $

$ h(t)=K\delta (t-a) $

$ H(s)=\int_{-\infty}^{\infty}h(\tau)e^{-s\tau}=\int_{-\infty}^{\infty}\frac{1}{2}u(\tau)e^{-s\tau} $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch