(Part A)
(Part A)
Line 1: Line 1:
 
==Part A==
 
==Part A==
 +
 +
 +
<math>y(t) = K x(t-a)</math>
 +
 +
if <math>x(t)=e^{jwt} </math> was inputed to the system
 +
 +
<math>y(t) = K e^{jw(t-a)}</math>
 +
 +
<math>= K e^{-jwa}e^{jwt}</math>
  
 
==  
 
==  

Revision as of 17:20, 26 September 2008

Part A

$ y(t) = K x(t-a) $

if $ x(t)=e^{jwt} $ was inputed to the system

$ y(t) = K e^{jw(t-a)} $

$ = K e^{-jwa}e^{jwt} $

== $ y(t) = K x(t-a) $

if $ x(t)=e^{jwt} $ was inputed to the system

$ y(t) = K e^{jw(t-a)} $

$ = K e^{-jwa}e^{jwt} $ ==

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett