Line 8: Line 8:
 
<math> \ a_k = 0 </math> for <math> \left \vert k \right \vert > 1 </math>.
 
<math> \ a_k = 0 </math> for <math> \left \vert k \right \vert > 1 </math>.
  
4. <math> \frac{1}{2}\int_{0}^{2} / left \vert k \right \vert \, dt </math>
+
4. <math> \frac{1}{2}\int_{0}^{2} \left \vert k \right \vert \, dt </math>

Revision as of 17:06, 26 September 2008

Suppose we are given the following information about a signal x(t):

1. x(t) is real and even.

2. x(t) is periodic with period T = 4 and Fourier coefficients $ \ a_k $.

3. $ \ a_k = 0 $ for $ \left \vert k \right \vert > 1 $.

4. $ \frac{1}{2}\int_{0}^{2} \left \vert k \right \vert \, dt $

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin