(New page: = Fourier series coefficients for CT signal = ===CT Signal=== :<math>\, x(t)=6sin(6t)</math> ===Fourier series coefficients=== :<math>x(t)=\sum_{k=-\infty}^\infty a_k e^{jk\omega_0 t}</mat...)
 
(Fourier series coefficients)
Line 4: Line 4:
 
===Fourier series coefficients===
 
===Fourier series coefficients===
 
:<math>x(t)=\sum_{k=-\infty}^\infty a_k e^{jk\omega_0 t}</math><br><br>
 
:<math>x(t)=\sum_{k=-\infty}^\infty a_k e^{jk\omega_0 t}</math><br><br>
:<math>\, x(t)=6sin(6t) = 6\cdot\frac{e^{j6t}-e^{-j6t}}{2j}=3(e^{j6t}-e^{-j6t})</math><br><br>
+
:<math>\, x(t)=6sin(6t) = 6\cdot\frac{e^{j6t}-e^{-j6t}}{2j}=\frac{3(e^{j6t}-e^{-j6t})}{j}</math><br><br>
:<math>\, x(t)=3e^{j6t}-3e^{-j6t}</math><br><br>
+
:<math>\, x(t)=\frac{3e^{j6t}}{j}-\frac{3e^{-j6t}}{j}</math><br><br>
:<math>\, a_1 = 3\ ,\  a_{-1} = 3</math>
+
:<math>\, a_1 = \frac{3}{j}\ ,\  a_{-1} = \frac{-3}{j}</math>

Revision as of 17:38, 26 September 2008

Fourier series coefficients for CT signal

CT Signal

$ \, x(t)=6sin(6t) $

Fourier series coefficients

$ x(t)=\sum_{k=-\infty}^\infty a_k e^{jk\omega_0 t} $

$ \, x(t)=6sin(6t) = 6\cdot\frac{e^{j6t}-e^{-j6t}}{2j}=\frac{3(e^{j6t}-e^{-j6t})}{j} $

$ \, x(t)=\frac{3e^{j6t}}{j}-\frac{3e^{-j6t}}{j} $

$ \, a_1 = \frac{3}{j}\ ,\ a_{-1} = \frac{-3}{j} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett