Line 7: Line 7:
  
 
<math>    = \frac{e^{j3\pi t}e^{\pi}+e^{-j3\pi t}e^{\pi}}{2}</math>
 
<math>    = \frac{e^{j3\pi t}e^{\pi}+e^{-j3\pi t}e^{\pi}}{2}</math>
 +
 +
<math>    = \frac{-e^{j3\pi t}-e^{-j3\pi t}}{2}</math>
  
 
<math>x(t) =  \frac{4\pi}{3} + \frac{1}{j2000}(e^{j1000\pi t}+e^{j-1000\pi t}) - \frac{1}{j1000}(e^{j1000\pi t}-e^{j-1000\pi t})</math>
 
<math>x(t) =  \frac{4\pi}{3} + \frac{1}{j2000}(e^{j1000\pi t}+e^{j-1000\pi t}) - \frac{1}{j1000}(e^{j1000\pi t}-e^{j-1000\pi t})</math>

Revision as of 16:39, 26 September 2008

Periodic CT Signal

$ x(t) = cos(3\pi t+\pi) \! $ with fundamental frequency of $ \pi $


$ x(t) = \frac{e^{j(3\pi t+\pi)}+e^{-j(3\pi t+\pi)}}{2} $

$ = \frac{e^{j3\pi t}e^{\pi}+e^{-j3\pi t}e^{\pi}}{2} $

$ = \frac{-e^{j3\pi t}-e^{-j3\pi t}}{2} $

$ x(t) = \frac{4\pi}{3} + \frac{1}{j2000}(e^{j1000\pi t}+e^{j-1000\pi t}) - \frac{1}{j1000}(e^{j1000\pi t}-e^{j-1000\pi t}) $

Fourier Series Coefficients

$ a_0 = \frac{4\pi}{3} $

$ a_1 = \frac{1}{1000} $

$ w_0 = 1000\pi\ $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett