(Unit Impulse Response h(t) and System Function H(s))
(Unit Impulse Response h(t) and System Function H(s))
Line 8: Line 8:
 
ii)
 
ii)
 
<math>H(s)=\int_{-\infty}^\infty h(\tau)e^{-j\omega\tau}d\tau</math>
 
<math>H(s)=\int_{-\infty}^\infty h(\tau)e^{-j\omega\tau}d\tau</math>
<math>\=\int_{-\infty}^\infty h(\tau)e^{-s\tau}d\tau</math>
+
<math>=\int_{-\infty}^\infty h(\tau)e^{-s\tau}d\tau</math>

Revision as of 15:55, 26 September 2008

Suppose we have a LTI CT signal y(t)=2x(t)

Unit Impulse Response h(t) and System Function H(s)

i) $ y(t)=2x(t)=> h(t)=2\delta(t) $

ii) $ H(s)=\int_{-\infty}^\infty h(\tau)e^{-j\omega\tau}d\tau $ $ =\int_{-\infty}^\infty h(\tau)e^{-s\tau}d\tau $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch