(New page: Suppose we have a LTI CT signal y(t)=2x(t) ==Unit Impulse Response h(t) and System Function H(s)== <math>y(t)=2x(t)=>h(t)=2\delta(t)</math> <math>H(j\omega)=\int_{-\infty}^\infty h(\tau)...)
 
(Unit Impulse Response h(t) and System Function H(s))
Line 2: Line 2:
  
 
==Unit Impulse Response h(t) and System Function H(s)==
 
==Unit Impulse Response h(t) and System Function H(s)==
<math>y(t)=2x(t)=>h(t)=2\delta(t)</math>
 
  
<math>H(j\omega)=\int_{-\infty}^\infty h(\tau)e^{-j\omega\tau}d\tau</math>
+
i)
 +
<math>y(t)=2x(t)=> h(t)=2\delta(t)</math>
 +
 
 +
ii)
 +
<math>H(s)=\int_{-\infty}^\infty h(\tau)e^{-j\omega\tau}d\tau</math>
 +
<math>\=\int_{-\infty}^\infty h(\tau)e^{-s\tau}d\tau</math>

Revision as of 15:55, 26 September 2008

Suppose we have a LTI CT signal y(t)=2x(t)

Unit Impulse Response h(t) and System Function H(s)

i) $ y(t)=2x(t)=> h(t)=2\delta(t) $

ii) $ H(s)=\int_{-\infty}^\infty h(\tau)e^{-j\omega\tau}d\tau $ $ \=\int_{-\infty}^\infty h(\tau)e^{-s\tau}d\tau $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch