(New page: Suppose we have a LTI CT signal y(t)=2x(t) ==Unit Impulse Response h(t) and System Function H(s)== <math>y(t)=2x(t)=>h(t)=2\delta(t)</math> <math>H(j\omega)=\int_{-\infty}^\infty h(\tau)...) |
(→Unit Impulse Response h(t) and System Function H(s)) |
||
Line 2: | Line 2: | ||
==Unit Impulse Response h(t) and System Function H(s)== | ==Unit Impulse Response h(t) and System Function H(s)== | ||
− | |||
− | <math> | + | i) |
+ | <math>y(t)=2x(t)=> h(t)=2\delta(t)</math> | ||
+ | |||
+ | ii) | ||
+ | <math>H(s)=\int_{-\infty}^\infty h(\tau)e^{-j\omega\tau}d\tau</math> | ||
+ | <math>\=\int_{-\infty}^\infty h(\tau)e^{-s\tau}d\tau</math> |
Revision as of 15:55, 26 September 2008
Suppose we have a LTI CT signal y(t)=2x(t)
Unit Impulse Response h(t) and System Function H(s)
i) $ y(t)=2x(t)=> h(t)=2\delta(t) $
ii) $ H(s)=\int_{-\infty}^\infty h(\tau)e^{-j\omega\tau}d\tau $ $ \=\int_{-\infty}^\infty h(\tau)e^{-s\tau}d\tau $