(New page: == Preview == This is only a preview; changes have not yet been saved! (????) == CT LTI system ==)
 
(CT LTI system)
Line 1: Line 1:
 
== Preview ==
 
== Preview ==
 
     This is only a preview; changes have not yet been saved! (????)
 
     This is only a preview; changes have not yet been saved! (????)
== CT LTI system ==
+
== CT LTI system Part a ==
 +
:<math> h(t) = e^{-t}u(t)</math><br><br>
 +
:<math> H(jw) = \int_0^{\infty} e^{-\tau}e^{-jw{\tau}}\,d{\tau}  </math>
 +
:::<math> = [-{1 \over 1 + jw}e^{-\tau}e^{-jwr} ]^{\infty}_0 </math><br><br>
 +
:::<math> = {1 \over 1+ jw}</math><br><br><br>
 +
 
 +
 
 +
== CT LTI system Part b ==
 +
<math>y(t) = \sum_{i=m}^n x_i = x_m + x_{m+1} + x_{m+2} +\dots+ x_{n-1} + x_n. </math>

Revision as of 16:13, 26 September 2008

Preview

   This is only a preview; changes have not yet been saved! (????)

CT LTI system Part a

$ h(t) = e^{-t}u(t) $

$ H(jw) = \int_0^{\infty} e^{-\tau}e^{-jw{\tau}}\,d{\tau} $
$ = [-{1 \over 1 + jw}e^{-\tau}e^{-jwr} ]^{\infty}_0 $

$ = {1 \over 1+ jw} $



CT LTI system Part b

$ y(t) = \sum_{i=m}^n x_i = x_m + x_{m+1} + x_{m+2} +\dots+ x_{n-1} + x_n. $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch