Line 10: Line 10:
  
 
<math>H(j\omega)=\int_{-\infty}^\infty (2\delta(\tau+3))e^{-j\omega\tau}d\tau</math>
 
<math>H(j\omega)=\int_{-\infty}^\infty (2\delta(\tau+3))e^{-j\omega\tau}d\tau</math>
 +
 +
y(t) = x(t)*H(t)
 +
 +
<math>y(t) = (2e^{3j\omega})*\frac{1}{2}e^{j4\pi t}+\frac{1}{2}e^{-j4\pi t}+\frac{1}{2j}e^{j2\pi t}+\frac{-1}{2j}e^{-j2\pi t}</math>

Revision as of 16:07, 26 September 2008

Given the system $ y(t) = 2x(t+3)\, $

$ x(t)= 2\delta(t+3) $

Then find the response to $ x(t) = cos(4t) + sin(2t)\, $

$ x(t)=\frac{1}{2}e^{j4\pi t}+\frac{1}{2}e^{-j4\pi t}+\frac{1}{2j}e^{j2\pi t}+\frac{-1}{2j}e^{-j2\pi t} $

$ H(j\omega)=\int_{-\infty}^\infty h(\tau)e^{-j\omega\tau}d\tau $

$ H(j\omega)=\int_{-\infty}^\infty (2\delta(\tau+3))e^{-j\omega\tau}d\tau $

y(t) = x(t)*H(t)

$ y(t) = (2e^{3j\omega})*\frac{1}{2}e^{j4\pi t}+\frac{1}{2}e^{-j4\pi t}+\frac{1}{2j}e^{j2\pi t}+\frac{-1}{2j}e^{-j2\pi t} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood