Line 4: | Line 4: | ||
Then find the response to <math>x(t) = cos(4t) + sin(2t)\,</math> | Then find the response to <math>x(t) = cos(4t) + sin(2t)\,</math> | ||
+ | |||
+ | <math>x(t)=\frac{1}{2}e^{j4\pi t}+\frac{1}{2}e^{-j4\pi t}+\frac{1}{2j}e^{j2\pi t}+\frac{-1}{2j}e^{-j2\pi t}</math> | ||
+ | |||
+ | <math>H(j\omega)=\int_{-\infty}^\infty h(\tau)e^{-j\omega\tau}d\tau</math> | ||
+ | |||
+ | <math>H(j\omega)=\int_{-\infty}^\infty (2\delta(\tau+3))e^{-j\omega\tau}d\tau</math> |
Revision as of 16:06, 26 September 2008
Given the system $ y(t) = 2x(t+3)\, $
$ x(t)= 2\delta(t+3) $
Then find the response to $ x(t) = cos(4t) + sin(2t)\, $
$ x(t)=\frac{1}{2}e^{j4\pi t}+\frac{1}{2}e^{-j4\pi t}+\frac{1}{2j}e^{j2\pi t}+\frac{-1}{2j}e^{-j2\pi t} $
$ H(j\omega)=\int_{-\infty}^\infty h(\tau)e^{-j\omega\tau}d\tau $
$ H(j\omega)=\int_{-\infty}^\infty (2\delta(\tau+3))e^{-j\omega\tau}d\tau $