Line 1: Line 1:
Given the system <math>y(t) = (t-1)\,</math>, where <math>y(t)\,</math> is the output and <math>x(t)\,</math> is the input, find the unit impulse response <math>h(t)\,</math> and the system function <math>H(s)\,</math>.<br>
+
Given the system <math>y(t) = 2x(t+3)\,</math>
 +
 
 +
<math> x(t)=\2delta(t+3) </math>
 +
 
 
Then find the response to <math>x(t) = cos(4t) + sin(2t)\,</math>
 
Then find the response to <math>x(t) = cos(4t) + sin(2t)\,</math>

Revision as of 16:03, 26 September 2008

Given the system $ y(t) = 2x(t+3)\, $

$ x(t)=\2delta(t+3) $

Then find the response to $ x(t) = cos(4t) + sin(2t)\, $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang