(New page: Given the system <math>y(t) = 5x(t-1)\,</math>, where <math>y(t)\,</math> is the output and <math>x(t)\,</math> is the input, find the unit impulse response <math>h(t)\,</math> and the sys...)
 
Line 1: Line 1:
Given the system <math>y(t) = 5x(t-1)\,</math>, where <math>y(t)\,</math> is the output and <math>x(t)\,</math> is the input, find the unit impulse response <math>h(t)\,</math> and the system function <math>H(s)\,</math>.<br>
+
Given the system <math>y(t) = 5(t-1)\,</math>, where <math>y(t)\,</math> is the output and <math>x(t)\,</math> is the input, find the unit impulse response <math>h(t)\,</math> and the system function <math>H(s)\,</math>.<br>
Then find the response to <math>x(t) = 5cos(3\pi t) + sin(\pi t)\,</math>
+
Then find the response to <math>x(t) = cos(3\pi t) + sin(\pi t)\,</math>

Revision as of 15:27, 26 September 2008

Given the system $ y(t) = 5(t-1)\, $, where $ y(t)\, $ is the output and $ x(t)\, $ is the input, find the unit impulse response $ h(t)\, $ and the system function $ H(s)\, $.
Then find the response to $ x(t) = cos(3\pi t) + sin(\pi t)\, $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett