Line 1: Line 1:
CT signal:
+
For the CT signal:
  
 
<math>x(t) = 2\sin(2 \pi t) - (1 + 3j)\cos(5 \pi t)\,</math>
 
<math>x(t) = 2\sin(2 \pi t) - (1 + 3j)\cos(5 \pi t)\,</math>

Revision as of 15:01, 26 September 2008

For the CT signal:

$ x(t) = 2\sin(2 \pi t) - (1 + 3j)\cos(5 \pi t)\, $


$ x(t) = 2 * \frac{e^{j2\pi t} - e^{-j2\pi t}}{2j} - (1 + 3j)*\frac{e^{j5\pi t} + e^{-j5\pi t}}{2}\, $


$ x(t) = \frac{1}{j}e^{j2\pi t} - \frac{1}{j}e^{-j2\pi t} - \frac{1+3j}{2}e^{j5\pi t} - \frac{1+3j}{2}e^{j5\pi t}\, $


$ x(t) = \frac{1}{j}e^{2*j\pi t} - \frac{1}{j}e^{-2*j\pi t} - \frac{1+3j}{2}e^{5*j\pi t} - \frac{1+3j}{2}e^{-5*j\pi t}\, $


$ \omega_0\, $ = $ \pi\, $ therefore k = 2,-2,5,-5

Applying the coefficients to get the $ a_k\, $


$ a_5 = \frac{-1-3j}{2}\, $ $ a_{-5} = \frac{-1-3j}{2}\, $


$ a_2 = \frac{1}{j}\, $ $ a_{-2} = \frac{-1}{j}\, $


For K \neq [2,-2,-5,5], $ a_k\, = 0 $

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010