Line 9: Line 9:
 
So,  
 
So,  
  
<math>\ a_{0} = 0 </math>
+
<math>\ b_{0} = 0 </math>
  
<math>\ b_{1} = \frac{1 + 2j}{2} (\frac{5}{1+jw})
+
<math>\ b_{1} = (\frac{1 + 2j}{2}) (\frac{5}{1+jw}) </math>
 +
 
 +
<math>\ b_{-1}= (\frac{1 + 2j}{2}) (\frac{5}{1 - j}) </math>
 +
 
 +
<math>\ b_{2} = \frac{5}{2j} \frac{5}{1 +5j} </math>
 +
 
 +
<math>\ b_{-2}= \frac{5}{2j} \frac{5}{1 - 5j}</math>

Revision as of 17:55, 26 September 2008

$ \ h(t) = 5e^{-t} $

$ \ H(jw) = 5\int_0^{\infty} e^{-\tau}e^{-jw{\tau}}\,d{\tau} $

$ \ H(jw) = 5[-\frac{1}{1 + jw}e^{-\tau}e^{-jwr} ]^{\infty}_0 $

$ \ H(jw) = \frac{5}{1+ jw} $

So,

$ \ b_{0} = 0 $

$ \ b_{1} = (\frac{1 + 2j}{2}) (\frac{5}{1+jw}) $

$ \ b_{-1}= (\frac{1 + 2j}{2}) (\frac{5}{1 - j}) $

$ \ b_{2} = \frac{5}{2j} \frac{5}{1 +5j} $

$ \ b_{-2}= \frac{5}{2j} \frac{5}{1 - 5j} $

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin