Line 4: Line 4:
  
 
<math>\ H(jw) = 5[-\frac{1}{1 + jw}e^{-\tau}e^{-jwr} ]^{\infty}_0 </math><br><br>
 
<math>\ H(jw) = 5[-\frac{1}{1 + jw}e^{-\tau}e^{-jwr} ]^{\infty}_0 </math><br><br>
 +
 
<math>\ H(jw) = \frac{5}{1+ jw} </math>
 
<math>\ H(jw) = \frac{5}{1+ jw} </math>

Revision as of 17:40, 26 September 2008

$ \ h(t) = 5e^{-t} $

$ \ H(jw) = 5\int_0^{\infty} e^{-\tau}e^{-jw{\tau}}\,d{\tau} $

$ \ H(jw) = 5[-\frac{1}{1 + jw}e^{-\tau}e^{-jwr} ]^{\infty}_0 $

$ \ H(jw) = \frac{5}{1+ jw} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood