(New page: This is my little scratchpad for the variance. <math>Var(X) = E[(X-E[X])^2]</math> <math>Var(X) = E[(\sum_{i=1}{n} X_i - \sum_{i=1}{n}E[X_i])^2]</math> <math> = E[(\sum_{i=1}{n} (X_i - ...)
 
 
Line 3: Line 3:
 
<math>Var(X) = E[(X-E[X])^2]</math>
 
<math>Var(X) = E[(X-E[X])^2]</math>
  
<math>Var(X) = E[(\sum_{i=1}{n} X_i - \sum_{i=1}{n}E[X_i])^2]</math>
+
<math>Var(X) = E[(\sum_{i=1}^{n} X_i - \sum_{i=1}^{n}E[X_i])^2]</math>
  
<math> = E[(\sum_{i=1}{n} (X_i - E[X_i]))^2]</math>
+
<math> = E[(\sum_{i=1}^{n} (X_i - E[X_i]))^2]</math>
  
 
Still working on it.
 
Still working on it.

Latest revision as of 09:13, 7 October 2008

This is my little scratchpad for the variance.

$ Var(X) = E[(X-E[X])^2] $

$ Var(X) = E[(\sum_{i=1}^{n} X_i - \sum_{i=1}^{n}E[X_i])^2] $

$ = E[(\sum_{i=1}^{n} (X_i - E[X_i]))^2] $

Still working on it.

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009