(Computing the Impulse Response and System Function)
(Computing the Impulse Response and System Function)
Line 11: Line 11:
  
 
The System Function is defined by:
 
The System Function is defined by:
 +
 +
<math>H(s)=\int_{-\infty}^{\infty} h(t)e^{-st}\,dt\,</math>
 +
 +
Now computing the actual response:
 +
 +
<math>H(s)=\int_{-\infty}^{\infty} 0.5 \delta(t-5) u(t) e^{-st}\,dt\,</math>
 +
 +
which is turns into:
 +
 +
 +
<math>H(s)=\int_{0}^{\infty} 0.5 \delta(t-5) e^{-st}\,dt\,</math>
 +
 +
Now using the sifting property of the delta function we obtain:
 +
 +
<math>\ H(s)= 0.5 e^{-5s} </math>

Revision as of 16:14, 26 September 2008

Defining an LTI System

For an input x(t), let the LTI system be defined as:

$ \ y(t)=0.5 x(t-5) u(t) $

Computing the Impulse Response and System Function

Inputting a delta into the system yields:

$ \ y(t)=h(t)=0.5 \delta(t-5) u(t) $

The System Function is defined by:

$ H(s)=\int_{-\infty}^{\infty} h(t)e^{-st}\,dt\, $

Now computing the actual response:

$ H(s)=\int_{-\infty}^{\infty} 0.5 \delta(t-5) u(t) e^{-st}\,dt\, $

which is turns into:


$ H(s)=\int_{0}^{\infty} 0.5 \delta(t-5) e^{-st}\,dt\, $

Now using the sifting property of the delta function we obtain:

$ \ H(s)= 0.5 e^{-5s} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood