(a) Finding the unit impulse response h[n] and the system function H(z).)
Line 12: Line 12:
  
 
<math>Z^n \rightarrow system \rightarrow F(z)Z^n</math>
 
<math>Z^n \rightarrow system \rightarrow F(z)Z^n</math>
 +
 +
Output of the system, <math>F(z)Z^n = h[n]*Z^n = \sum_{m=-\infty}^{\infty} h[m]Z^{n-m}</math>

Revision as of 14:05, 26 September 2008

Defining the DT LTI system

$ x[n] \rightarrow system \rightarrow y[n] = 5x[n] $

a) Finding the unit impulse response h[n] and the system function F(z).

$ x[n] = \delta [n] \rightarrow system \rightarrow y[n]=5\delta [n] $

Therefore the unit impulse response, $ h[n] = 5\delta [n] $

For a DT LTI system,

$ Z^n \rightarrow system \rightarrow F(z)Z^n $

Output of the system, $ F(z)Z^n = h[n]*Z^n = \sum_{m=-\infty}^{\infty} h[m]Z^{n-m} $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett