(→a) Finding the unit impulse response h[n] and the system function H(z).) |
(→a) Finding the unit impulse response h[n] and the system function H(z).) |
||
Line 3: | Line 3: | ||
<math>x[n] \rightarrow system \rightarrow y[n] = 5x[n]</math> | <math>x[n] \rightarrow system \rightarrow y[n] = 5x[n]</math> | ||
− | ==a) Finding the unit impulse response h[n] and the system function | + | ==a) Finding the unit impulse response h[n] and the system function F(z).== |
<math>x[n] = \delta [n] \rightarrow system \rightarrow y[n]=5\delta [n]</math> | <math>x[n] = \delta [n] \rightarrow system \rightarrow y[n]=5\delta [n]</math> | ||
Therefore the unit impulse response, <big><math>h[n] = 5\delta [n]</math></big> | Therefore the unit impulse response, <big><math>h[n] = 5\delta [n]</math></big> | ||
+ | |||
+ | For a DT LTI system, | ||
+ | |||
+ | <math>Z^n \rightarrow system \rightarrow F(z)Z^n</math> |
Revision as of 14:01, 26 September 2008
Defining the DT LTI system
$ x[n] \rightarrow system \rightarrow y[n] = 5x[n] $
a) Finding the unit impulse response h[n] and the system function F(z).
$ x[n] = \delta [n] \rightarrow system \rightarrow y[n]=5\delta [n] $
Therefore the unit impulse response, $ h[n] = 5\delta [n] $
For a DT LTI system,
$ Z^n \rightarrow system \rightarrow F(z)Z^n $