Line 1: Line 1:
From the memoryless property of''' Exponential Distribution''' function:
+
<nowiki>Insert non-formatted text here</nowiki>
 
+
Suppose '''E(1,λ) and E(1,μ)''' are independent, then;
+
 
+
P [min{ E(1,λ) , E(1,μ) } > t] = P [E(1,λ) > t] . P [E(1,μ) } > t]
+
 
+
        = exp (-λt) . exp (-μt)
+
 
+
        = exp {-(λ + μ)t}
+
 
+
which shows that minimum of E(1,λ) and E(1,μ) is exponentially distributed.
+
  
 +
From the memoryless property of Exponential Distribution function:
 +
Suppose E1,λ and E1,μ are independent, then;
 +
P[min{ E1,λ , E1,μ } > t] = P[E1,λ > t] . P[E1,μ } > t]
 +
        = eˉλt . eˉμt
 +
        = eˉ(λ + μ)t
 +
which shows that minimum of E1,λ and E1,μ is exponentially distributed.
 
So,
 
So,
 
+
E1, λ1+ λ2+ λ3+……. λn = min { E1,λ1, E1,λ2, E1,λ3, ……….., E1,λn }
'''E(1, λ1+ λ2+ λ3+……. λn) = min { E(1,λ1), E(1,λ2), E(1,λ3), ……….., E(1,λn) }'''
+
 
+
 
Here, if we put λ = 1, then;
 
Here, if we put λ = 1, then;
 
+
E1, 1+ 2+ 3+……. n = min { E1,1, E1,2, E1,3, ……….., E1,n }
'''E(1, 1+ 2+ 3+……. n) = min { E(1,1), E(1,2), E(1,3), ……….., E(1,n) }''''''
+

Revision as of 17:48, 6 October 2008

Insert non-formatted text here

From the memoryless property of Exponential Distribution function: Suppose E1,λ and E1,μ are independent, then; P[min{ E1,λ , E1,μ } > t] = P[E1,λ > t] . P[E1,μ } > t] = eˉλt . eˉμt = eˉ(λ + μ)t which shows that minimum of E1,λ and E1,μ is exponentially distributed. So, E1, λ1+ λ2+ λ3+……. λn = min { E1,λ1, E1,λ2, E1,λ3, ……….., E1,λn } Here, if we put λ = 1, then; E1, 1+ 2+ 3+……. n = min { E1,1, E1,2, E1,3, ……….., E1,n }

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin